Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot
نویسندگان
چکیده
This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.
منابع مشابه
Flexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot
This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...
متن کاملPSO-Based Path Planning Algorithm for Humanoid Robots Considering Safety
In this paper we introduce an improvement in the path planning algorithm for the humanoid soccer playing robot which uses Ferguson splines and PSO (Particle Swarm Optimization). The objective of the algorithm is to find a path through other playing robots to the ball, which should be as short as possible and also safe enough. Ferguson splines create preliminary paths using random generated para...
متن کاملHumanoid Soccer Gait Generation and Optimization Using Probability Distribution Models
In this paper, humanoid gait generation is formulated as a multi-objective optimization problem with multiconstraint based on probability distribution models. Under this framework, an estimation of distribution algorithm (EDA) based gait optimization approach has been developed to speed up searching in high dimensional coupling space constructed by the permutation of optimization parameters to ...
متن کاملAn Optimal Control-Based Formulation to Determine Natural Locomotor Paths for Humanoid Robots
In this paper we explore the underlying principles of natural locomotion path generation of human beings. The knowledge of these principles is useful to implement biologically inspired path planning algorithms on a humanoid robot. By ‘locomotion path’ we denote the motion of the robot as a whole in the plane. The key to our approach is to formulate the path planning problem as an optimal contro...
متن کاملHumanoid Robot Locomotion and Manipulation Step Planning
We aim at planning multi-contact sequences of stances and postures for humanoid robots. The output sequence defines the contact transitions that allow our robot to realize different kind of tasks, ranging from biped locomotion to dexterous manipulation. The central component of the planning framework is a best-first algorithm that performs a search of the contacts to be added or removed at each...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Auton. Robots
دوره 40 شماره
صفحات -
تاریخ انتشار 2016